Research
Cyclic Peptides
Synthetic methods
Permeability
Therapeutic applications
Targeting G1–S-checkpoint-compromised cancers with cyclin A/B RxL inhibitors
Dual inhibitors of cyclin A and cyclin B RxL motifs (cyclin A/Bi) selectively kill SCLC cells and other cancer cells with high E2F activity. Genetic screens revealed that cyclin A/Bi induces apoptosis through cyclin B- and CDK2-dependent spindle assembly checkpoint activation. Mechanistically, cyclin A/Bi hyperactivates E2F and cyclin B by blocking cyclin A–E2F and cyclin B–MYT1 RxL interactions. Notably, cyclin A/Bi promoted the formation of neomorphic cyclin B–CDK2 complexes, which drive spindle assembly checkpoint activation and mitotic cell death. Finally, orally administered cyclin A/Bi showed robust anti-tumour activity in chemotherapy-resistant SCLC patient-derived xenografts. These findings reveal gain-of-function mechanisms through which cyclin A/Bi triggers apoptosis and support their development for E2F-driven cancers.
Cyclative Release of Peptidic Compounds
The present disclosure provides efficient and reliable methods for preparing cyclized peptidic compounds. Advantageously, the currently described methods allow for on-resin cyclization using a limited number of processing steps, while increasing the chemical diversity available for the cyclized peptidic compounds produced.
Discovery of Cell-Permeable Macrocyclic Cyclin A/B RxL Inhibitors that Demonstrate Antitumor Activity
Utilizing structure-based design, we have discovered a family of cell-permeable macrocyclic Cyclin A/B RxL inhibitors that show potent and selective activity against RB1/E2F-dysregulated cancer cell lines. Lead compound 34 demonstrated proof-of-concept efficacy via intraperiotoneal (IP) administration in mouse cell line-derived xenograft (CDX) tumor models.
Synthetic Receptors
Cucurbiturils
Molecular recognition of peptides and proteins
Aromatic interactions